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Waveguide and Resonator Perturbation

Techniques Measuring Chirality and

Nonreciprocity Parameters Biisotropic Materials

Sergei A. Tretyakov and Ari J. Viitanen

AMract-Waveguide and resonator perturbation techniques are con-

sidered for determining electromagnetic parameters of general
biisotropic, or nonreciprocal chiral, materials. The biisotropic materials
are the most general linear isotropic media, whose constitutive relations
are governed by four complex material parameters. The material
parameters of biisotropic media can be obtained through measuring the
change in the propagation constant of waveguide modes or measuring

the shift in the resonant frequency for resonators with perturbation
techniques. Tomeasure these parameters a method utilizing waveguides
or cavity resonators with two degenerate modes is proposed.

I. INTRODUCTION

Interest in biisotropic materials has been recently widely increasing

since they offer some novel promising applications in microwave

technology and radio engineering, like low-reflection coatings [1],

elimination of crosspolarization in microwave lens antennas [2] and

construction of a twist polarizer [3]. The most general isotropic

materials are characterized by four material parameters, dielectric

Manuscript received March8, 1993: revised April 11, 1994.

S. Tretyakov is with the Radiophysics Department, St, Petersburg State
Technical University, 195251, Polytekhnicheskay a29, St. Petersburg, Russia

A. Viitanen is with the Electromagnetic Laboratory, Department of Electri-

cal Engineering, Helsinki University of Technology, Otakmri 5 A, FIN-02150
Espoo, Finland.

IEEE Log Number 9406785.

permittivity, magnetic permeability, chirality parameter and non-

reciprocity parameter. The biisotropic media are, in general, non-

reciprocal, and the reciprocal special case is usually called chiral

media. In electromagnetic terms, biisotropic materials were formal-

ized for the first time in 1948, when Tellegen invented gyrator, a

nonreciprocal circuit element, and considered what kind of material

is needed to manufacture it [4]. It has been known that the materiaf

parameters of abilsotropic medium are associated with a model of

the medium possessing both electric and magnetic dipole moments,

parallel orantiparallel to each other [5].

To be able to determine the medium parameters of the biisotropic

material is of great importance for practical applications. This work

applies to chiral media in practice and gives a method to determine

the material parameters for the general, theoretically interesting

biisotropic media. In this paper we use the perturbation theory for

general waveguides and resonators with small biisotropic inclusions

and propose possible cavity resonator measurement techniques and

waveguide perturbation techniques for measuring both the chirality

parameter and the nonreciprocity parameter simultaneously. Free-

space techniques are used to measure the chirality parameter in chiral

composites [6]–[8], and the theoretical basis for the retrieval of the

material parameters is the theory of reflection and transmission in

chiral slabs. An alternative measurement technique for nonreciprocity

parameter measurements is given in [9]. An approach to determina-

tion of the chirality parameter by using corrugated waveguides with

chiral inclusions is discussed in [10]. A cavity resonator method for

measuring the nonreciprocity parameter has been suggested in [11].

II. PERTURBATION THEORY

The biisotropic medium is characterized by linear and isotropic

constitutive relations with four scalar parameters. These relations can

be written (asstrming the eJwL time dependence), in the form

D= EE+<H. B=pH+<E, (1)

where t and p are dielectric permittivity and magnetic permeability

of the medium, respectively, and the parameters & and < characterize

coupling between the electric and magnetic fields. It is convenient to

write the coupling parameters & and ~ in the form [12]:

<=( Y–JK)-, (=(x+ jK)m> (2)

where co and #o are the free-space permittivity and permeability,

respectively, and the parameter ~ describes the magnitude of chirality

and x the nonreciprocity of the medium.

A. Waveguide Perturbation

Consider a waveguide with an arbitrary cross-section and ideally

conducting walls. Field vectors of propagating modes in the empty

guide have e–J80 = dependence on the longitudinal co-ordinate z. A

biisotropic rod of a small cross-section positioned in the waveguide

causes a small change Ap’ in the propagation factor /~o which can be

measured. The unperturbed electric and magnetic fields EO , Ho

and the perturbed fields ~ . H inside the waveguide satisfy the

Maxwell equations, where the e~u~ time dependency is assumed and

Vt is the two-dimensional gradient operator in the transverse plane.

In the conventional way, by forming the expression [13]

H:. v,x E+ H.vtx E;– E;. vt XH– E. V,XH:

and integrating this expression over the cross-section area S of the

waveguide, the following relation for the change of the propagation
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factor A/? = /’ –IjO can be obtained:

(3)

Here AS is the cross-section area of the biisotropic rod, and the aster-

isk denotes complex conjugate vectors. The factor in the denominator

represents the power propagating in the waveguide

(4)

where it is assumed that we can perturbationally approximate E =

~0, H z HO when integrating over the waveguide cross-section area.

The boundary term which appears during the integration around the

boundary of the waveguide with ideal conductor walls vanishes. The

two last terms in (3) give a first-order change in the propagation factor

with respect to the nonreciprocity parameter y and to the chirality

parameter K.

To determine the fields inside the biisotropic inclusion of a small

circular cross-section we make use of the quasi-static approximation

for the transverse fields inside the bilsotropic rod set in an unperturbed

field &, ~tO [ 14]–~16] shown at bottom of the next page. Inserting

the quasi-static fields into the expression for the change of the

propagation factor (3), we obtain (6), shown at the bottom of the

page, where we have denoted A . = (p>. + l)(cr+ 1) - (\ ’+ K’)

and the index tdenotes the transverse field components. It is clearly

seen that, by using small perturbation approximation to achieve the

first-order change in the propagation factor due to the nonreciprocity

factor y, the unperturbed field configuration for the propagating mode

must have a non-zero value for Re (E. H;) [11], while the first-

order change due to the chirality parameter K we have when the

unperturbed fields have a non-zero value for lm (~”. H;) [ 17]–[ 19].

We will see in the next subsection that this is also valid when using

cavity resonator methods for determining material parameters.

B. Resonator Perturbation

A perturbation formula expressed in terms of electric and magnetic

dipole moments of the inclusion has been published in [20]. Per-

turbation theory for cavity resonators with ideally conducting walls

and small biisotropic inclusions was developed in [11]. The resonant

frequency shift due to a biisotropic inclusion is given by the following

exact formula

where E and H are the fields inside the sample, and Eo and Ho stand

for the unperturbed fields. The integral is calculated over the inclusion

volume AIT only. If the perturbation inclusion is so small that we

can replace the fields by their unperturbed values when calculating

the integral over the cavity volume., then in the denominator H’o is

proportional to the field energy in the unperturbed resonatoc

For a special case of a spherical biisotropic sample we can use the

quasistatic approximation for the fields inside a biisotropic sphere,

which gives the following relations between the fields inside the

sample and the external fields [16], [21]:

with Ar = (p? + 2)(c, + 2) – (~z + ~z ). Substituting (9) into (7)

leads to the expression for the shift of the resonance frequency

3ti
Ati=— —

4WoA, /[6.[(6,–I)(#r+ 2) – (X2 + K2)]E0 . E:

A~

III. CHIRALITY AND NON-RECIPROCITY PARAMETER MEASUREMENTS

Based on the perturbation analysis of the previous section, we

can now study possibilities to measure the material parameters by

waveguide or resonator techniques. As is seen from (6), (10), to

have a first-order effect on the waveguide propagation factor or on

the resonance frequency of a cavity proportional to the chirality

parameter, we should have such a mode that Im(E. . H:) is non-

zero. In contrast, to have a first-order effect due to the non-reciprocity

parameter, we must have non-zero real part of the dot product

Ea . H;. In this section we consider possible ways of achieving

desired properties of the modes. Obviously, the modes must be

degenerate, since otherwise the dot product ~o. H: always vanishes

due to the orthogonality of the modes. The two modes are degenerate

if they have different field patterns but the same eigenfrequencies

[22]. In the following we consider for simplicity the circular cross-

section wavegnides and cylindrical resonators. However, the theory

can be applied to the general case of arbitrary cross-section guides

by substituting corresponding solutions for Hertz vectors.

(5)

[

2
+PO~ [(Lfr – 1)(6, + 1) – (k’ + K2)]17t” . lx. + (Lfr’ – l)~zoff:o 1
+y= [ 1[%~Re(,Et. . HF. ) + 2Re(E,. H~. ) – h- 1)Im(Ei. Hto) + 21m(E..HZ.) ds, (6)

w!
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A. Wavegaide Techniques

Let m consider the dot product Eo . H; for eigenwaves in a

waveguide with a circular cross-section of the radius a and assume

ideally conducting walls. For H-modes, for example, in cylindrical

co-ordinate system the dot product is

(11)
P ‘dip tip’

where L’ is the Hertz potential function [22]. First, we see that the

dotproduct EO. H~ isalways imaginary .Consequently, while using

any waveguide with only H-modes, one can measure chirality but

not the nonreciprocity parameter-. In analogy, the same result can be

stated for the E-modes. Moreover. to have the dot product non-zero

and to provide non-zero coupling, we must have a degenerate mode.

Indeed, substituting H for circular waveguides in the form

where J“,(x) is the Bessel function of the first kind, k, = p’~n/a

and A, B the amplitude coefficients, leads to Eo.H~ w lm(AB*).

Ifeither.40r B iszero, thedotproduct vanishes. Forll-modes, of

course, one will get a similar result.

Let us see now if we can utilize two degenerate propagating

modes of different types and consider the case when one of the

modes is an E-mode and another is an H-mode. For example, in

a circular waveguide modes I?l n and HO n are degenerate. because

,4C= pj. la = pO. la [22]. The dot product of the total fields reads

EO. H: = (E,n .17:n +Eun. H:n)+(Eln .H;n+EOn. H;.) (13)

where the indices mark the fields of the corresponding modes. The

first term vanishes because of the orthogonality of the the fields in

each of the modes, but the latter term remains. Writing the dot product

in terms of longitudinal parts of Hertz potentials 11 for the H-mode

and M for the E-mode

we see that this function is in general complex and we can have both

real and imaginary coupling terms in (6).

Specifically, for a circular waveguide with El 1 and Ho L modes,

we substitute the Hertz potentials

where ,liC = 3.832/a and the free-space wave number k. = ti -.

The result is

When the Hertz potentials of two degenerate modes are in phase (e.g.,

A = B = 1), the dot product is a real quantity. This allows one to

measure non-reciprocity, since there is a first-order perturbation of

the propagation factor, proportional to the nonreciprocity parameter.

When the modes are 90 degrees out of phase (A = 1, B = j) we have

imaginary coupling co-efficient, and the perturbation is proportional

to the chirality parameter. (The last case was also considered in [19]).

B. Resonator Techniques

Let us next study the resonator problem by considering, for

example, the cylindrical resonator with ideally conducting walls. The

length of the resonator is L and the radius is CL.Again, by taking two,

for example, H-modes, and calculating ~c . H;, one arrives to

(17)

which is always a real function, in contrast with that for the waveg-

uides, and, hence, the chirality parameter K is not measurable. This

could have been expected, since a resonator mode is a combination

of two waveguide modes, propagating in the opposite directions.

Perturbations due to chirality cancel out because of the isotropy

and the reciprocity. However, we can measure the nonreciprocity

parameter y by exciting two degenerate H- (or two E-) modes.

Let us consider two degenerate modes of different types. In a

cylindrical resonator of a circular cross-section, for example, the

modes l?lnP and Honp are degenerate. The index p = 1.2. 3, ..

After some calculation we find (18), shown at bottom of this page.

In general, the dot product ( 18) is complex. More specifically, for

a circular cross-section. let us consider the modes El 11 and HO 11.

Substituting the Hertz potentials

with k. = 3.&32/a, in the expressions of the fields results in

(20), shown at bottom of this page. Thus, depending on the phase

shift between the modes, the dot product (20) can be either real or

imaginary. It is interesting to note that in a rectangular resonator

EC . H: is always real [1 1].

As is seen, when the dot product (20) is a real quantity the chirality

parameter K cancels out from (10). This gives a way for measuring

the nonreciprocity parameter, because the last two terms in (10)

become proportional to y. On the other hand, if the dot product

is an imaginary quantity, the nonreciprocity parameter x cancels out

from (10), thus, giving a way for measuring the chirality parameter.

However, in order to determine the Tellegen parameter y and the

chirality parameter K, we still have to measure first p and ●, for

example, by using samples, the form of which are needle or disc and

locate them properly in a cavity resonator [1 1]. Also the quantities

AU, and A, in the denominator of (6) and (10) have to be measured,

for example, through the technique discussed previously in [1 1].

(18)

(20)
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IV. CONCLUSION

The coupling terms in the perturbation formulas for both the

waveguide and resonator perturbations are proportional to the cou-

pling parameters x and ~ in the constitutive equations, and to

the dot product of the electric and magnetic fields in unperturbed

modes. In the present study we have demonstrated that by exciting

properly two degenerate modes in waveguides or resonators with

ideally conducting walls, the perturbation is proportional to either

the nonreciprocity parameter x or the chirality parameter ~. This

gives away tomeasure the material parameters y andfi separately.

Moreover, it appears that it is possible to distinguish between the

effects of chirality and nonreciprocity by changing the phase shift

of the two modes in a waveguide or a resonator. This makes the

method rather convenient and simple.

If there exist only H- or E-polarized fields in a waveguide, the cou-

pling term is always imaginary, andthenonreciprocityof inclusions

gives only a second-order effect on the propagation factor. In contrast,

in a resonator with either H- or E-modes, the coupling term is always

real, andthere arenofirst-order effects ontheresonant frequency due

to the chirality parameter ~. Physically, the perturbational methods

of the biisotropic media parameters measurement are based on the

coupling between two orthogonal modes when a biisotropic sample

ispresent inside awaveguide or a resonator. Since the coupling effect

is small, it seems preferable to excite both the modes by an external

source and to measure the shift of the resonant frequency or the

propagation factor of a degenerate mode. This approach makes the

effect more pronounced. The paper presents a theoretical treatment of

the measurement problem and there are many practical considerations

to betaken into account. For example, thetwo degenerate modes are

also coupled because of the losses in the walls of a waveguide or

a resonator, and that can mask small effects due to the inclusion.

These and other possible sources for errors have to be eliminated in

practicaf applications of the suggested measurement techniques.
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An Efficient Method for Computing the Capacitance

Matrix of Multiconductor Interconnects in

Very High-Speed Integrated Circuit Systems

Shui-Ping Luo and Zhcng-Fan Li

Abstract— A new method for computing the capacitance matrix of
multicondnctor interconnects with firnite metalfization thickness is devel-

oped. Converting the vertical wafl of the rectangular conductors into the
equivalent horizontal strips allows the Green’s function in the spectral
domain and the FFT algorithm to be used, which makes the method
more effective for computing capacitance matrix of the interconnects.

I. INTROIIUCTION

As is well known, the computation of the electrical parameters of

the interconnects for very high-speed integrated circuit systems is a

hard task, even with the quasi-TEM assumption. For such structures

(for example, the chip-to-chip or on-chip interconnects for VHSIC),

multiconductor transmission lines with finite metallization thickness

in multilayered dielectric media are used. C. Wei, R. F. Barrington,

and others, [1], [2] have employed the well known moment method

using the total charge Green’s function, which has a very simple form

(like the free space Green’s functicm). But the method is consuming
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