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Waveguide and Resonator Perturbation
Techniques Measuring Chirality and
Nonreciprocity Parameters Biisotropic Materials

Sergei A. Tretyakov and Ari J. Viitanen

Abstract—Waveguide and resonator perturbation techniques are con-
sidered for determining electromagnetic parameters of general
biisotropic, or nonreciprocal chiral, materials. The biisotropic materials
are the most general linear isotropic media, whose constitutive relations
are governed by four complex material parameters. The material
parameters of biisotropic media can be obtained through measuring the
change in the propagation constant of waveguide modes or measuring
the shift in the resonant frequency for resonators with perturbation
techniques. To measure these parameters a method utilizing waveguides
or cavity resonators with two degenerate modes is proposed.

I. INTRODUCTION

Interest in biisotropic materials has been recently widely increasing
since they offer some novel promising applications in microwave
technology and radio engineering, like low-reflection coatings [1],
elimination of crosspolarization in microwave lens antennas [2] and
construction of a twist polarizer [3]. The most general isotropic
materials are characterized by four material parameters, dielectric
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permittivity, magnetic permeability, chirality parameter and non-
reciprocity parameter. The biisotropic media are, in general, non-
reciprocal, and the reciprocal special case is usually called chiral
media. In electromagnetics terms, biisotropic materials were formal-
ized for the first time in 1948, when Tellegen invented gyrator, a
nonreciprocal circuit element, and considered what kind of material
is needed to manufacture it [4]. It has been known that the material
parameters of a biisotropic medium are associated with a model of
the medium possessing both electric and magnetic dipole moments,
parallel or antiparallel to each other [5].

To be able to determine the medium parameters of the biisotropic
material is of great importance for practical applications. This work
applies to chiral media in practice and gives a method to determine
the material parameters for the general, theoretically interesting
biisotropic media. In this paper we use the perturbation theory for
general waveguides and resonators with small biisotropic inclusions
and propose possible cavity resonator measurement techniques and
waveguide perturbation techniques for measuring both the chirality
parameter and the nonreciprocity parameter simultaneously. Free-
space techniques are used to measure the chirality parameter in chiral
composites [6]-[8], and the theoretical basis for the retrieval of the
material parameters is the theory of reflection and transmission in
chiral slabs. An alternative measurement technique for nonreciprocity
parameter measurements is given in [9]. An approach to determina-
tion of the chirality parameter by using corrugated waveguides with
chiral inclusions is discussed in [10]. A cavity resonator method for
measuring the nonreciprocity parameter has been suggested in [11].

II. PERTURBATION THEORY

The biisotropic medium is characterized by linear and isotropic
constitutive relations with four scalar parameters. These relations can
be written (assuming the e/“* time dependence), in the form

D=¢E+¢H. B=uH+(E, (1)

where € and p are dielectric permittivity and magnetic permeability
of the medium, respectively. and the parameters ¢ and ¢ characterize
coupling between the electric and magnetic fields. It is convenient to
write the coupling parameters £ and ¢ in the form [12]:

E= (Y= e€o, (= (X +jK)yIoCo, 2)

where €, and p, are the free-space permittivity and permeability,
respectively, and the parameter x describes the magnitude of chirality
and x the nonreciprocity of the medium.

A. Waveguide Perturbation

Consider a waveguide with an arbitrary cross-section and ideally
conducting walls. Field vectors of propagating modes in the empty
guide have e dependence on the longitudinal co-ordinate z. A
biisotropic rod of a small cross-section positioned in the waveguide
causes a small change A in the propagation factor /3, which can be
measured. The unperturbed electric and magnetic fields £, , H,
and the perturbed fields E . H inside the waveguide satisfy the
Maxwell equations, where the e/“? time dependency is assumed and
V¢ is the two-dimensional gradient operator in the transverse plane.

In the conventional way, by forming the expression [13]

H -V XE+H-ViXxE, —E; VixH~FE-V,xH

and integrating this expression over the cross-section area .S of the
waveguide, the following relation for the change of the propagation
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factor A = 3 — /3, can be obtained:
Ag =2 / (e = €)E - Bl + (i — o) - + €0 - B
“Xs

+ ¢CE-H]] dS. 3

Here AS is the cross-section area of the biisotropic rod, and the aster-
isk denotes complex conjugate vectors. The factor in the denominator
represents the power propagating in the waveguide

Po:/(E;X.FIO-I-E_’Oxﬂ':).ﬁ:dS’ 4)

where it is assumed that we can perturbationally approximate F =~
E,, I ~ H, when integrating over the waveguide cross-section area.
The boundary term which appears during the integration around the
boundary of the waveguide with idéal conductor walls vanishes. The
two last terms in (3) give a first-order change in the propagation factor
with respect to the nonreciprocity parameter \ and to the chirality
parameter k.

To determine the fields inside the biisotropic inclusion of a small
circular cross-section we make use of the quasi-static approximation
for the transverse fields inside the bitsotropic rod set in an unperturbed
field E:o, H:o [141-116] shown at bottom of the next page. Inserting
the quasi-static fields into the expression for the change of the
propagation factor (3), we obtain (6), shown at the bottom of the
page, where we have denoted A, = (g + 1)(e, + 1) — (\* + &?)
and the index ¢ denotes the transverse field components. It is clearly
seen that, by using small perturbation approximation to achieve the
first-order change in the propagation factor due to the nonreciprocity
factor y, the unperturbed field configuration for the propagating mode
must have a non-zero value for Re(E, - H!) [11]. while the first-
order change due to the chirality parameter x we have when the
unperturbed fields have a non-zero value for Im(E, - H) [17]-[19].
We will see in the next subsection that this is also valid when using
cavity resonator methods for determining material parameters.

B. Resonator Perturbation

A perturbation formula expressed in terms of electric and magnetic
dipole moments of the inclusion has been published in [20]. Per-
turbation theory for cavity resonators with ideally conducting walls
and small biisotropic inclusions was developed in [11]. The resonant
frequency shift due to a biisotropic inclusion is given by the following
exact formula

w
A”*‘m/

AV

[(e=€)E-E; +(n—po)H-Hy +EH-E5+(CE-H| dV

where E and H are the fields inside the sample, and E, and f, stand
for the unperturbed fields. The integral is calculated over the inclusion
volume AV only. If the perturbation inclusion is so small that we
can replace the fields by their unperturbed values when calculating
the integral over the cavity volume. then in the denominator W, is
proportional to the field energy in the unperturbed resonator:

W, = i/(eoEo CEl 4+ p.H, - H)dV. ®)
‘/

For a special case of a spherical biisotropic sample we can use the
quasistatic approximation for the fields inside a biisotropic sphere,
which gives the following relations between the fields inside the
sample and the external fields [16], [21]:

AL SCSTNC
()3

€ + 2
with A, = (u, +2)(e, + 2) — (\* + &?). Substituting (9) into (7)
leads to the expression for the shift of the resonance frequency

M2
—(x+jk)

__ 3w ) P
Aw == e / {eo[(er 1)(pr +2) — (x> + kM) E, - B
AV

+ ol(pr — V)(er +2) — (x* + ¥ Ho - H}
+ GX‘/eopoRe(E_'o CHY) - Gm/fo,uofm(Eo . I_IZ) dyv.
(10

III. CHIRALITY AND NON-RECIPROCITY PARAMETER MEASUREMENTS

Based on the perturbation analysis of the previous section, we
can now study possibilities to measure the material parameters by
waveguide or resonator techniques. As is seen from (6). (10), to
have a first-order effect on the waveguide propagation factor or on
the resonance frequency of a cavity proportional to the chirality
parameter, we should have such a mode that Im(E, - H}) is non-
zero. In contrast, to have a first-order effect due to the non-reciprocity
parameter, we must have non-zero real part of the dot product
E, - HZ. In this section we consider possible ways of achieving
desired properties of the modes. Obviously, the modes must be
degenerate, since otherwise the dot product E, - A} always vanishes
due to the orthogonality of the modes. The two modes are degenerate
if they have different field patterns but the same eigenfrequencies
[22]. In the following we consider for simplicity the circular cross-
section waveguides and cylindrical resonators. However, the theory
can be applied to the general case of arbitrary cross-section guides

(7) by substituting corresponding solutions for Hertz vectors.
E; 2 pr+1 —(x=JH) Lf% (/Eto> 5)
(ﬁt> (e D(er 4+ 1)~ (X2 + K2) —(x +JjK) €& +1 Hio )’
P / (60[ (ér — 1) (p, +1) — X + HQ)]Eto - E;o + (€ — l)E:oE:u}
A
+ /‘LO[ [(HT_I) 6r+1 _(X +'L‘ ]Htu Hto+(ll7 Hon»/o]
+ Y/Toto { Re(E., - H},) + 2Re( ELUH“O)} — ky/floto I:EIm(Eto CH) + Qer(EwH:o)]>dS, (6)
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A. Waveguide Techniques

Let us consider the dot product E, - H} for eigenwaves in a
waveguide with a circular cross-section of the radius a and assume
ideally conducting walls. For H-modes. for example, in cylindrical
co-ordinate system the dot product is

B A — Wite 3o (?_IZ@U* B 8_]13]]*)
P dyp Op 9p By
_ 2o, O 0T
O¢ dp

where I is the Hertz potential function [22]. First, we see that the
dot product E, - H} is always imaginary. Consequently, while using
any waveguide with only H-modes, one can measure chirality but
not the nonreciprocity parameter. In analogy, the same result can be
stated for the E-modes. Moreover. to have the dot product non-zero
and to provide non-zero coupling, we must have a degenerate mode.
Indeed, substituting I7 for circular waveguides in the form

amn

I{p,v) = I kep)|Acosme + Bsinmy] (12)

where J,, (r) is the Bessel function of the first kind, k. = pr,,/a
and A, B the amplitude coefficients, leads to E, - HX ~ Im(AB*).
If either A or B is zero, the dot product vanishes. For F-modes, of
course, one will get a similar result.

Let us see now if we can utilize two degenerate propagating
modes of different types and consider the case when one of the
modes is an E-mode and another is an H-mode. For example, in
a circular waveguide modes £, and Hy, are degenerate. because
k. = pin/a = pon/a [22]. The dot product of the total fields reads

Eog: = (Em Efn +E0n'ﬁgn)‘*‘(Eln'ﬂgn‘FE_‘On'H;n) (13)

where the indices mark the fields of the corresponding modes. The
first term vanishes because of the orthogonality of the the fields in
each of the modes, but the latter term remains. Writing the dot product
in terms of longitudinal parts of Hertz potentials /7 for the H-mode
and M for the E-mode

E, -0 =M™ +/32(8M on 1 0M oIl )

9p dp " P Oy Oy
_kz<0ﬂ[*8_]7 i@M*ﬂ)
dp dp ~ p? dp Op )’
we see that this function is in general complex and we can have both
real and imaginary coupling terms in (6).
Specifically. for a circular waveguide with E11 and Hoi modes,
we substitute the Hertz potentials

M(p, ) = AJi(kep) cosp. I {p, o) = B Jg(kep).

where k. = 3.832/a and the free-space wave number & = w./lio€q.
The result is
Eo - Hy =k2 cos[AB" (K2 Jo(kep)J1 (kep)
+85 o (kep)Ti(kep)) — A*B k> Jo(kep)Ji (kep)].
(16)

(14)

15)

When the Hertz potentials of two degenerate modes are in phase (e.g.,
A = B = 1), the dot product is a real quantity. This allows one to
measure non-reciprocity, since there is a first-order perturbation of
the propagation factor, proportional to the nonreciprocity parameter.
‘When the modes are 90 degrees out of phase (4 = 1, B = j) we have
imaginary coupling co-efficient, and the perturbation is proportional
to the chirality parameter. (The last case was also considered in [19]).

B. Resonator Techniques

Let us next study the resonator problem by considering, for
example, the cylindrical resonator with ideally conducting walls. The
length of the resonator is L and the radius is «. Again, by taking two,
for example, H-modes, and calculating £, - H, one arrives to

= oIr oI
E,-H, ~Im(—
m(&p r

). (17)

which is always a real function, in contrast with that for the waveg-
uides, and, hence, the chirality parameter « is not measurable. This
could have been expected, since a resonator mode is a combination
of two waveguide modes, propagating in the opposite directions.
Perturbations due to chirality cancel out because of the isotropy
and the reciprocity. However, we can measure the nonreciprocity
parameter Y by exciting two degenerate H - (or two E-) modes.

Let us consider two degenerate modes of different types. In a
cylindrical resonator of a circular cross-section, for example, the
modes E'inp and Ho,p, are degenerate. The index p = 1. 2, 3, ... .
After some calculation we find (18), shown at bottom of this page.
In general, the dot product (18) is complex. More specifically, for
a circular cross-section. let us consider the modes Ey11 and Ho1q.
Substituting the Hertz potentials

M(p,p) = AJi(kep)cos . I(p,p) = BJo(kep),  (19)

with k. = 3.832/a, in the expressions of the fields results in
(20), shown at bottom of this page. Thus, depending on the phase
shift between the modes. the dot product (20) can be either real or
imaginary. It is interesting to note that in a rectangular resonator
E, - 0 is always real [11].

As is seen. when the dot product (20) is a real quantity the chirality
parameter  cancels out from (10). This gives a way for measuring
the nonreciprocity parameter, because the last two terms in (10)
become proportional to x. On the other hand, if the dot product
is an imaginary quantity, the nonreciprocity parameter x cancels out
from (10), thus, giving a way for measuring the chirality parameter.
However, in order to determine the Tellegen parameter y and the
chirality parameter x, we still have to measure first ;1 and ¢, for
example, by using samples, the form of which are needle or disc and
locate them properly in a cavity resonator [11]. Also the quantities
A, and A, in the denominator of (6) and (10) have to be measured,
for example, through the technique discussed previously in [11].

s a=x L. 2pmi|o4 N prN\2(OM OIT* 1 oM eI~ o OM™ 011 1 0M™* 811
Eo-Hy = Zsin—— |k, MIT™ — [~ — -1 -k — 4+ —
2 ST [ ! (L)(@,) o 7 0y Og 50 0p T 09 o (8)
— — Lz . 27z * 2 7‘—2 1 1 * 2 1 1
E,-H, = 5 sin—p=cosp ABT k. Jo(kep) 1 (kep) — ﬁJo(kcp)Jl(k(p) — A" BE Jy(kep) i (kep) |- (20)
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IV. CONCLUSION

The coupling terms in the perturbation formulas for both the
waveguide and resonator perturbations are proportional to the cou-
pling parameters  and k in the constitutive equations, and to
the dot product of the electric and magnetic fields in unperturbed
modes. In the present study we have demonstrated that by exciting
properly two degenerate modes in waveguides or resonators with
ideally conducting walls, the perturbation is proportional to either
the nonreciprocity parameter x or the chirality parameter x. This
gives a way to measure the material parameters y and x separately.
Moreover, it appears that it is possible to distinguish between the
effects of chirality and nonreciprocity by changing the phase shift
of the two modes in a waveguide or a resonator. This makes the
method rather convenient and simple.

If there exist only H - or F-polarized fields in a waveguide, the cou-
pling term is always imaginary, and the nonreciprocity of inclusions
gives only a second-order effect on the propagation factor. In contrast,
in a resonator with either H- or E-modes, the coupling term is always
real, and there are no first-order effects on the resonant frequency due
to the chirality parameter . Physically, the perturbational methods
of the biisotropic media parameters measurement are based on the
coupling between two orthogonal modes when a biisotropic sample
is present inside a waveguide or a resonator. Since the coupling effect
is small, it seems preferable to excite both the modes by an external
source and to measure the shift of the resonant frequency or the
propagation factor of a degenerate mode. This approach makes the
effect more pronounced. The paper presents a theoretical treatment of
the measurement problem and there are many practical considerations
to be taken into account. For example, the two degenerate modes are
also coupled because of the losses in the walls of a waveguide or
a resonator, and that can mask small effects due to the inclusion.
These and other possible sources for errors have to be eliminated in
practical applications of the suggested measurement techniques.
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An Efficient Method for Computing the Capacitance
Matrix of Multiconductor Interconnects in
Very High-Speed Integrated Circuit Systems

Shui-Ping Luo and Zheng-Fan Li

Abstract— A new method for computing the capacitance matrix of
multiconductor interconnects with finite metallization thickness is devel-
oped. Converting the vertical wall of the rectangular conductors into the
equivalent horizontal strips allows the Green’s function in the spectral
domain and the FFT algorithm to be used, which makes the method
more effective for computing capacitance matrix of the interconnects.

I. INTRODUCTION

As is well known, the computation of the electrical parameters of
the interconnects for very high-speed integrated circuit systems is a
hard task, even with the quasi-TEM assumption. For such structures
(for example, the chip-to-chip or on-chip interconnects for VHSIC),
multiconductor transmission lines with finite metallization thickness
in multilayered diclectric media are used. C. Wei, R. F. Harrington,
and others, [1], [2] have employed the well known moment method
using the total charge Green’s function, which has a very simple form
(like the free space Green’s function). But the method is consuming
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